Monday, 30 October 2017

Como Interpretar O Teste De Cointegração De Johansen No Stata Forex


Ao ler os resultados, você tem duas equações de cointegração, ou dois vetores de cointegração. Isso se traduz em classificação de cointegração igual a uma (número de variáveis ​​no sistema menos o número de vetores de cointegração: 3-21). Dois vetores de cointegração não são iguais à ordem de cointegração igual a dois. Sua ordem de cointegração é igual a uma se cada uma das variáveis ​​originais é I (1), uma vez que existe uma combinação linear (na verdade, duas combinações lineares - devido aos dois vetores de cointegração) de variáveis ​​estacionárias. Nota lateral: linha 3 Observações incluídas: 21 após ajustes sugerem que você tenha muito poucos pontos de dados, então os resultados do teste de cointegração podem não ser confiáveis. Respondeu 27 de maio 15 às 13:23 Uma vez que o teste de Johansen mostra presença de cointegração, VECM seria a escolha lógica. Em uma nota secundária, estou bastante preocupado com o baixo número de observações. Se eu estiver lendo a tabela corretamente, o número de observações é essencialmente muito baixo para qualquer modelo maior do que, digamos, VAR (1) ou VECM (1). Tente usar modelos parcimoniosos o mais longe possível e não confie demais nos resultados da estimativa. Ndash Richard Hardy 27 de maio 15 às 17: 59 Tenho duas séries temporais um amplificador b. O objetivo é descobrir se duas séries são cointegradas ou não. Estou usando Johansen Test em R para descobrir isso. Aqui está o resumo do teste (teste de rastreamento com interceptação constante): ca. jo (cbind (a, b), typetrace, ecdet const, K 2, especificação longrun) Johansen-Procedure Tipo de teste: estatística de rastreamento. Sem tendência linear e constante na cointegração Valores de testes e valores críticos de teste: Eigenvectors, normalizados para a primeira coluna: (Estas são as relações de cointegração) constante 1135.666923 -2889.4155208 -7862.128714 Pesos W: (Esta é a matriz de carregamento) Agora, minha pergunta como Para interpretar esse resultado e determinar se um amplificador b é cointegrado ou não O que é uma matriz de carregamento em um teste de cointegração Como interpretar os valores críticos Como determinar se deve manter uma interceptação constante ou uma interceptação zero. Preciso verificar que séries individuais é uma I (1) series antes de executar o teste de johansen Há uma pergunta semelhante que foi feita antes aqui, mas não respondeu completamente minha pergunta. 12 de maio 12 às 19:57 Algumas das suas perguntas já foram respondidas sobre a pergunta que você menciona. Leia com atenção para entender melhor. Em particular, responde muito bem como concluir se existe co-integração ou não. Observe também que esta questão não é realmente relevante aqui tanto no nível quanto no assunto (é uma questão estatística pura e pode ser feita em stats. stackexchange). Se você precisar de mais detalhes e provas sobre esse assunto, você poderia ler o artigo de Johansen seminal: Estimativa e teste de hipóteses de vetores de coordenadas em modelos gaussianos de vetor autoregressivo. (É muito técnico, no entanto) Agora vamos levar o outro por um. 1A matriz de carregamento é a matriz genericamente referenciada como alfa (verifique a documentação da urca). 2 Os valores críticos: se a hipótese nula (r0, rlt1) for verificada, sua estatística de teste segue uma distribuição conhecida. Dada a distribuição cumulativa, você pode encontrar onde se situam 90, 95, 99 dos valores. Aqui, sob o nulo, sua estatística de teste (o rastreio) é distribuída por um chi2. Portanto, se seu valor for maior que alguns dos valores críticos, você pode rejeitar o nulo com essa confiança. Obviamente, no seu caso, você não pode rejeitar nada com confiança (não significa que você provou que o nulo está verificado). Não estou dizendo se isso significa co-integração ou não, pois é muito melhor que você ache isso por si mesmo. 3 Não tenho tanta certeza sobre a intercepção (no VECM), mas é crítico, pois corresponde a uma tendência determinística na representação VAR e altera as estatísticas de teste. Suponho que você poderia primeiro ajustar um modelo com a intercepção e testar seu significado. Minha crença é que a tendência determinística não é muito provável com as séries temporais financeiras. 4 Ao contrário dos testes (ADF e outros) com base na metodologia Engle e Granger, você não precisa testar se a sua série é I (1) anteriormente, pois esta é uma das nulas no seu teste de rastreamento. Chek, aquele na pergunta anterior que você mencionou. Como regra, penso que alguém deveria tentar aplicar. Não use um método estatístico se você não entender. Muito obrigado por você responder. Ainda tenho dúvidas. No 4º ponto, você está dizendo que, no teste de johansen, não precisamos testar séries é eu (1) individualmente. Você pode tomar uma hipótese (r0 ou rlt1) e explicar a hipótese nula eo critério exato quando rejeitá-la. E também, na distribuição do qui quadrado, qual deve ser o grau de liberdade que devo usar. Obrigado novamente ndash techpaisa 25 de maio 12 às 5:51 techpaisa você deve testar sucessivamente, o primeiro é nulo: r0 contra rgt0. No seu caso, você rejeita em 99 se o seu teste (12.88) gt24.60. Se isso fosse verdade, você testaria r1 contra o rgt1. 2,46gt12.97. Se você rejeitar isso, então você pode concluir que r2. Você não precisa saber o grau de liberdade à medida que os valores críticos são tabulados ndash Zarbouzou 25 de maio 12 às 8:53 Eu pensei que devíamos nos certificar de que não entramos em nenhuma variável I (0) no procedimento de Johansen Começa a Economia de Introdução Econômica para Finanças Seu capítulo Johansen com 39Suponha que um conjunto de variáveis ​​g estão em consideração que são I (1) e. 39. Também não obteria relações de cointegração triviais se você entrar em I (0) variáveis ​​ndash Jase 28 de dezembro 12 às 6:27

No comments:

Post a Comment